DEVELOPMENT OF A RADIOCHEMISTRY LABORATORY FOR THE PRODUCTION OF 99mTc USING NEUTRON ACTIVATION

Sheldon Landsberger Jessica Rosinski

Purpose

- Goal: To set up a comprehensive graduate radiochemistry laboratory to isolate ^{99m}Tc using the neutron activation of stable ammonium molybdenate
- Included:
 - An overview of the nuclear medicine information of 99mTc
 - Radiation dose received for specific medical diagnoses
 - Germanium detector efficiency curve that can be used for activity measurements of other medical isotopes.

What is ^{99m}Tc?

- Most widely used radioisotope in nuclear diagnostic imaging.
- Traditionally produced from fission of uranium to produce ⁹⁹Mo which then decays to ^{99m}Tc

```
^{99}Mo (t½ = 66 h) → ^{99}mTc (t½ = 6.01 h) → ^{99}Tc (t½ = 2.1 x 105y) → ^{99}Ru (stable)
```

99mTc and Medical Imaging

- A small amount of ^{99m}Tc is incorporated in a carrier molecule and injected into the patient's blood stream. Selective accumulation of the ^{99m}Tc in specifically targeted internal organs is achieved through the design of the carrier molecule.
- In 0.9% NaCl, ^{99m}Tc is a sterile, non-pyrogenic, diagnostic radiopharmaceutical suitable for intravenous injection, oral administration, and direct instillation.
- ⁹⁹Mo is constantly decaying to fresh ^{99m}Tc, so it is possible to elute the generator at any time.

99mTc Characteristics

- The eluate is a clear liquid with a pH of 4.5-7.5.
- 99mTc decays by isomeric transition with a physical half-life of 6.02 hours.
- 99mTc decays by gamma emission to 99Tc

Sodium Pertechnetate ^{99m}Tc Injection is used in adults as an agent for:

- Brain Imaging (including cerebral radionuclide angiography)
- Thyroid Imaging
- Salivary Gland Imaging
- Placenta Localization
- Blood Pool Imaging (including radionuclide angiography)
- Urinary Bladder Imaging (direct isotopic cystography) for the detection of vesico-ureteral reflux.
- Nasolacrimal Drainage System Imaging

Sodium Pertechnetate ^{99m}Tc Injection is used in children as an agent for:

- Brain Imaging (including cerebral radionuclide angiography)
- Thyroid Imaging
- Blood Pool Imaging
- Urinary Bladder Imaging (direct isotopic cystography)
- For the detection of vesico-ureteral reflux.

Laboratory Calculations

The amount of 99 Mo (in mCi) produced from 5.0 m ammonium molybdate (NH₄)₆Mo₇O₂₄·4H2O) irradiated for 1 hour at 6 x 10^{12} cm⁻¹s⁻¹ is given by:

$$A = NσΦ(1-e^{-λt})$$

where:

A = activity of 99Mo in Becquerels at the end of irradiation

N = number of 98Mo atoms

 σ = thermal Neutron capture cross section for 98Mo in cm2

 Φ = thermal Neutron flux in the reactor in cm2s-1

I = decay constant for 99Mo in h

 λ = irradiation time in h

The total activity is calculated to be 0.91 mCi.

Laboratory Procedure

- Materials Used:
 - Irradiated Ammonium Molybdate solution
 - 20 mL 0.9% NaCl solvent
 - Activated Alumina
- Vacuum filtration system
- Eluate collection
- Analysis

Chromatography Column

An ammonium molybdate solution is used as a ⁹⁹Mo source, and is eluted with 0.9% sodium chloride. ⁹⁹Mo is also polar, and so it is embedded in the stationary phase, while the non-polar ^{99m}Tc acts as the mobile phase which passes through the column to be collected.

⁹⁹Mo and ^{99m}Tc Equilibrium Curves

Calculation of a Germanium Detector Efficiency Curve

Half-life of ¹⁵²Eu 13.542 Y

427353019.2 s

Decay Constant

(lamda) 1.62195E-09 1/s

Activity 106.39 kBq

106390 Bq

Certification Date 1/1/1999 0:00

6/10/2003

Current Date 15:00

Decay Time 1621.63 days

140108400.00 seconds

Current Activity 84763.25443 Bq

found by $A = Aoe^{-((lamda)(decay time))}$

Efficiency Curve Data

Energy	Intensity	Counts	Gammas	Efficiency
121.8	28.67	2.88E+06	1.73E+09	0.001665
244.7	7.61	5.18E+05	4.59E+08	0.001127
344.3	26.6	1.34E+06	1.6E+09	0.000837
411.1	2.233	1.03E+05	1.35E+08	0.000767
867.4	4.2	9.68E+04	2.53E+08	0.000382
964.1	14.6	3.11E+05	8.81E+08	0.000353
1085.9	9.9	2.28E+05	5.97E+08	0.000382
1408.0	20.8	3.28E+05	1.25E+09	0.000261

Germanium Detector Efficiency Calibration

Calculation of ⁹⁹Mo breakthrough in terms of activity

Federally allowed limit:

0.15 microcuries of Mo per millicuries of 99mTc

The mCi of ^{99m}Tc obtained can be calculated below:

$$\frac{P(140)}{0.89(3.7\times10^7)(t)}$$

P(140) is the number of net counts for the 99mTc peak at 140 keV

The mCi of ⁹⁹Mo is determined by using the number of counts per second for the ⁹⁹Mo peak at 181 keV, a branching ratio of 0.0599, and the constant 3.7 x 10⁴ disintegrations per second/mCi.

Results

- The required 20 mL can be eluted through the column in less than five minutes when vacuum filtrated
- No peak was found at 181 KeV
- Upper limit of the background interference was above the 99mTc peak.
- A higher activation or larger sample of 99Mo is needed for a larger amount of 99mTc to be filtrated out.

Bibliography

- Buckley, P. T., D. L. Dugan, J. T. Elliston, R. H. Filby, R. H. and J. J. Lessmann, Journal of Chemical Education, 83(2006) 625-627.
- International Atomic Energy Agency, "Alternative technologies for 99Tcm generators Final Report of a Coordinated Research Programme 1990-1994" 1995 IAEA-TECDOC-852 (1995).
- http://www.rsc.org/pdf/radioactivity/number5.pdf
- http://www.nuclearonline.org/PI/Nycomed%20Mo%2099-Tc%2099m%20Genera.pdf
- http://www.radiopharm.com/pdf/pi/TECHNELITE% 20513160-0303.pdf